Journal of Organometallic Chemistry, 80 (1974) 349-355 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

REACTIONS OF METHYLNIOBIUM(V) AND METHYLTANTALUM(V) CHLORIDES WITH CARBODILMIDES

JOHN D. WILKINS*

Donnan Laboratories, University of Liverpool, Liverpool L69 3EX (Great Britain) (Received May 8th, 1974)

Summary

The chlorides Me_xMCl_{5-x} , M = Nb, Ta, x = 1, 2, 3 react with carbodiimides RNCNR (R = isopropyl, cyclohexyl, p-tolyl) to give products of the types $MCl_{4}[NR-C(Me)=NR]$, $MeMCl_{3}[NR-C(Me)=NR]$, $MCl_{3}[NR-C(Me)=$ $=NR]_{2}$, $Me_{2}MCl_{2}[NR-C(Me)=NR]$, $MeMCl_{2}[NR-C(Me)=NR]_{2}$, which contain bidentate acetamidine groups arising from insertion of the carbodiimide into the metal-carbon bond. The products have been characterised by elemental analysis IR and proton NMR spectra.

Introduction

As part of a study of the reactions of methylniobium(V) and methyltantalum(V) chlorides their reactions with carbodiimides have been investigated [1-3]. Reactions of carbodiimides with early transition metal alkyls have not been previously investigated but their reactions with Grignard reagents [4] and other main group organometallic compounds have been reported [5]. Carbodiimides also insert into Ti-N and Zr-N bonds [6].

Results and discussion

The reactions of the alkyls Me_xMCl_{5-x} (M = Nb, Ta, x = 1-3) with the carbodiimides (RNCNR) R = isopropyl (PRCD), tert-butyl (BUCD), cyclohexyl (CCD) and p-tolyl (PTCD) have been investigated. Products containing disubstituted acetamidine groups have been characterised in most cases. The carbodiimide inserts into the M-C bonds in a manner analogous to that reported for the related reactions with RNCO and RNCS [1, 2]. The complexes prepared together with appropriate analytical data are listed in Table 1.

Present address, Department of Chemistry, University College London, 20 Gordon St., London WC1H OAJ.

TABLE 1 COMPLEXES PREPARED AND ANALYTICAL DATA

$\begin{tabular}{ c c c c c c c } \hline Cl & M \\ \hline NbCl_1[PR] & Req & 37,3 & 24,2 \\ (37,7) & (24,7) \\ (31,1) & (24,7) \\ (31,1) & (20,4) \\ (31,1) & (20,4) \\ (31,1) & (20,4) \\ (31,1) & (20,4) \\ (31,1) & (20,4) \\ (31,1) & (20,4) \\ (31,1) & (20,4) \\ (31,2) & (31,2) \\ (31,2) & (32,2) \\ (31,2) & (31,2) \\ (31,2) & (32,2) \\ (31,2) & (32,2) \\ (31,2) & (32,2) \\ (31,2) & (32,2) \\ (31,2) & (32,2) \\ (31,2) & (32,2) \\ (31,2) & (32,2) \\ (31,2) & (32,2) \\ (31,2) & (32,2) \\ (31,2) & (32,2) \\ (31,2) & (32,2) \\ (31,2) & (31,2) \\ (31,2) & (32,2) \\ (31$	Complex a	Colour	Analysis found (caled.) (%)			
NbCl4[PR] Reg 37.3 24.2 NbCl4[CY] Violet (37.7) (24.7) NbCl4[PT] Dark red-brown 30.4 20.5 NbCl4[PT] Dark red-brown 30.0 20.0 (31.1) (20.4) (31.1) (20.4) TaCl4[PR] Orange-red 30.2 38.7 (30.6) (38.0) (19.7) (33.3) TaCl4[PT] Ørange-red 25.5 32.2 McNbCl3[PR] Hrown-red 29.7 23.7 McNbCl3[PR] Hrown-red 29.7 23.7 MeNbCl3[CY] Fed-brown 34.2 21.7 (24.4) (21.3) (24.4) (21.3) MeNbCl3[PT] Orange-red 23.6 40.7 (24.0) (40.8) (20.5) (24.4) MeTaCl3[PT] Orange-red 23.6 40.7 MeTaCl3[PT] Orange-red 23.6 40.7 MeTaCl3[PT] Red 18.7 32.0 MeTaCl3[PT] Red 18.7 32.6			Cl	М		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NbCL _i [PR]	Rea	37.3	24.2		
NbCl ₄ [CY] Violet 30.4 20.5 NbCl ₄ [PT] Dark red-brown 30.0 20.0 TaCl ₄ [PR] Orange-red 30.2 38.7 TaCl ₄ [CY] Bright red 26.0 33.3 TaCl ₄ [CY] Bright red 26.1 (33.3) TaCl ₄ [PT] (brange-red 25.5 32.2 MeNbCl ₃ [PT] (brange-red 25.5 32.2 MeNbCl ₃ [CY] Fed-brown 24.2 21.7 MeNbCl ₃ [PT] (crange-brown 23.8 20.6 MeNbCl ₃ [PT] Grange-red 23.6 40.7 TaCl ₃ [PT] Grange-red 20.6 33.3 MeTaCl ₃ [PT] Grange-red 20.6 34.2 (18.7) (31.8) (34.6) 34.2 (24.0) (40.8) 34.6 34.6 MeTaCl ₃ [PT] Yellow-orange 19.7 33.4			(37.7)	(24.7)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NBCL1[CY]	Violet	30,4	20.5		
NbCl ₄ [PT] Dark red-brown 30.0 20.0 TaCl ₄ [PR] Orange-red 30.2 38.7 TaCl ₄ [CY] Bright red 26.0 33.3 TaCl ₄ [PT] Orange-red 25.6 32.2 TaCl ₄ [PT] Orange-red 25.5 32.2 MeNbCl ₃ [PR] Orange-red 25.7 25.7 MeNbCl ₃ [PR] Fed-brown 34.2 21.7 MeNbCl ₃ [PT] Crange-brown 23.8 20.6 MeNbCl ₃ [PT] Crange-brown 23.8 20.6 MeNbCl ₃ [PT] Crange-brown 23.8 20.6 MeTaCl ₃ [PT] Orange-red 23.6 40.7 (24.0) (40.8) (40.8) (40.8) MeTaCl ₃ [PT] Red 18.7 32.0 MeTaCl ₃ [PT] Pellow-orange 19.4 33.4 (20.3) (34.6) (40.8) (41.6) MeTaCl ₃ [PT] Pellow-orange 19.4 33.4 (21.2) (21.7) (33.6) (34.6) MetaCl ₃ [PT] Red 16.8 14.7			(31.1)	(20.4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NbCL [PT]	Dark red-brown	30.0	20.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(30.0)	(19.7)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TaCl ₄ [PR]	Orange-red	30.2	38.7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(30 6)	(39.0)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TaCL [CY]	Bright red	26.0	33.3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(26.1)	(33.3)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TJCL1[PT]	()range-red	25.5	32.2		
MeNbCl ₃ [PR] lirown-red 29.7 25.7 MeNbCl ₃ [CY] Fed-brown 23.2 21.7 MeNbCl ₃ [PT] Crange-brown 23.8 20.6 MeTaCl ₃ [PR] Orange-red 23.6 40.7 TaCl ₃ [PR] Orange-red 23.6 40.7 TaCl ₃ [PR] Orange-red 23.6 40.7 TaCl ₃ [Pr] Red 18.7 32.0 MeTaCl ₃ [CY] Orange-red 20.0 34.2 MeTaCl ₃ [PT] Yellow-orange 19.4 33.4 MeTaCl ₃ [PT] Yellow-orange 19.4 33.4 MeTaCl ₂ [PR] Red-brown 20.5 27.4 Me2NbCl ₂ [CY] Red 13.8 22.6 Me2NbCl ₂ [CY] Red 14.8 22.6 MeNbCl ₂ [CY] Red 11.6 14.7 MeNbCl ₂ [CY] Red 11.6 14.7 MeNbCl ₂ [CY] Red 11.6 14.7 MeNbCl ₂ [CY] Red 13.8 33.1 Me2TaCl ₂ [PR] Yellow-orange 12.8 33.1 Me ₂			(25.3)	(32.3)		
MeNbCl_3[CY] Fed-brown 24.2 21.7 MeNbCl_3[PT] Crange-brown 23.8 20.6 MeTaCl_3[PR] Orange-red 23.6 40.7 TaCl_3[Pr]_2 Red 18.7 32.0 MeTaCl_3[PT] Orange-red 20.6 40.7 TaCl_3[Pr]_2 Red 18.7 32.0 MeTaCl_3[CY] Orange-red 20.0 34.2 MeTaCl_3[PT] Yellow-orange 19.4 33.4 MeTaCl_3[PT] Yellow-orange 19.4 33.4 Me_2NbCl_2[PR] R*d-brown 20.5 27.4 (19.7) (33.5) 22.6 (17.1) Me_2NbCl_2[CY] R*d 13.8 22.6 Me_NbCl_2[CY] R*d 13.8 22.6 Meshcl_2[CY] R*d 13.8 22.4 Meshcl_2[CY] R*d 13.8 22.4 Meshcl_2[CY] R*d 11.6 14.7 Meshcl_2[CY] R*d 13.8 32.4 Meshcl_2[CY] Yellow-orange 12.8 <td< td=""><td>MeNbCl3[PR]</td><td>Brown-red</td><td>29.7</td><td>25.7</td><td></td></td<>	MeNbCl3[PR]	Brown-red	29.7	25.7		
MeNbCl3[CY] Fed-brown 24.2 21.7 MeNbCl3[PT] Grange-brown 23.8 20.6 MeTaCl3[PR] Orange-ted 23.6 40.7 TaCl3[PT]2 Red 18.7 32.0 MeTaCl3[CY] Orange-ted 20.6 40.7 TaCl3[PT]2 Red 18.7 32.0 MeTaCl3[CY] Orange-ted 20.0 34.2 MeTaCl3[CY] Orange-ted 20.0 34.2 MeTaCl3[CY] Orange-ted 20.0 34.2 MeTaCl3[CY] Orange-ted 20.0 34.4 MeTaCl3[PT] Yellow-orange 19.4 33.4 MeTaCl3[PT] Yellow-orange 19.4 33.4 MeTaCl2[PR] R*d-brown 20.5 27.4 Me2NbCl2[CY] R*d 13.6 14.7 MeNbCl2[CY]2 R*d 11.6 14.7 MebbCl2[CY]2 R*d 17.0 43.1 MetaCl2[PR] Yellow-orange 12.8 33.1 MetaCl2[PR]2 Yellow-orange 12.8 <td>- -</td> <td></td> <td>(29.9)</td> <td>(26.1)</td> <td></td>	- -		(29.9)	(26.1)		
MeNbCl3[PT] Crange-brown 23.8 20.6 MeTaCl3[PR] Orange-red 23.6 40.7 TaCl3[PT]2 Red 18.7 32.0 MeTaCl3[PT]2 Red 18.7 32.0 MeTaCl3[PT]2 Red 18.7 32.0 MeTaCl3[PT]2 Red 18.7 31.8 MeTaCl3[PT] Orange-red 20.0 34.2 (20.3) (34.6) (34.6) MeTaCl3[PT] Yellow-orange 19.4 33.4 MeTaCl3[PT] Yellow-orange 19.4 33.4 MeTaCl3[PT] Red-brown 20.5 27.4 Me2NbCl2[CY] Red 16.8 22.6 MeNbCl2[CY]2 Red 16.6 14.7 MeNbCl2[CY]2 Red 16.6 14.7 MeTaCl2[PR] Yellow-orange 12.8 33.1 MeTaCl2[PR]3 Yellow-orange 12.8 33.1 MeTaCl2[PR]4 Yellow-orange 12.8 33.1 MeTaCl2[PR]5 Yellow-orange 5.8 24.8 MegTaCl2[CY]4 Yellow-orange	MeNbCl3[CY]	f'ed-brown	34.2	21.7		
MeNbCl_3[PT] Crange-brown 23.8 20.6 MeTaCl_3[PR] Orange-red 23.6 40.7 TaCl_3[PT]_2 Red 18.7 32.0 MeTaCl_3[CY] Orange-red 20.0 34.2 MeTaCl_3[PT] Yellow-orange 19.4 33.4 MeTaCl_3[PT] Yellow-orange 19.4 33.4 MeTaCl_3[PT] Yellow-orange 19.4 33.4 MeTaCl_3[PT] R*d-brown 20.5 27.4 Me_2NbCl_2[PR] R*d-brown 20.5 27.4 Me_2NbCl_2[CY] R*d 13.8 22.6 MeNbCl_2[CY] R*d 11.6 14.7 MeNbCl_2[CY] R*d 17.0 43.1 MeTaCl_2[PR] Yellow-orange 12.8 33.1 MeTaCl_2[PR] Yellow-orange 12.8 33.1 MeTaCl_2[PR] Yellow-orange 12.8 33.1 MeTaCl_2[PR] Yellow-orange 12.8 33.1 MeTaCl_2[PR] Yellow-orange 5.8 24.8 Me_2TaCl_2[CY] Yellow-orange 9.8 24.8 </td <td></td> <td></td> <td>(24.4)</td> <td>(21 3)</td> <td></td>			(24.4)	(21 3)		
MeTaCl_3 [PR]Orange-red (23.5) (20.5) MeTaCl_3 [PT]_2Red (24.0) (40.8) TaCl_3 [PT]_2Red 18.7 32.0 MeTaCl_3 [CY]Orange-red 20.0 34.2 MeTaCl_3 [PT]Yellow-orange 19.4 33.4 MeTaCl_3 [PT]Yellow-orange 19.4 33.4 MeTaCl_2 [PR]Red-brown (20.3) (34.6) Me2 NbCl_2 [PR]Red-brown (21.2) (27.7) Me_2 NbCl_2 [CY]Red 15.8 22.6 MeNbCl_2 [CY]_2Red 11.6 14.7 Me_2 TaCl_2 [PR]Yellow 17.0 43.1 Me_2 TaCl_2 [PR]Yellow-orange 12.8 33.1 Me_2 TaCl_2 [PR]Yellow-orange 12.8 33.1 Me_2 TaCl_2 [PR]Yellow 14.1 36.1 MeTaCl_2 [PR]Yellow 14.1 36.1 MeTaCl_2 [PT]_2Yellow-orange 5.8 24.8 MeTaCl_2 [PT]Yellow 13.9 33.6 MeTaCl_2 [PT]_2Yellow 9.7 24.8	MeNbCl3[PT]	Crange-brown	23.8	20.6		
MeTaCl_1 [PR] Orange-red 23.6 40.7 TaCl_3 [PT]_2 Red 18.7 32.0 MeTaCl_3 [CY] Orange-red 20.0 34.2 MeTaCl_3 [PT] Orange-red 20.0 34.2 MeTaCl_3 [PT] Yellow-orange 19.4 33.4 MeTaCl_3 [PT] Yellow-orange 20.5 27.4 Me_2 NbCl_2 [PR] R*d-brown 20.5 27.4 MetaCl_2 [CY] 2 R*d 11.6 14.7 MetaCl_2 [PR] Yellow 17.0 43.1 MetaCl_2 [PR] 2 Yellow-orange 12.8 33.1 MetaCl_2 [PR] 2 Yellow-orange 12.8 33.1 MetaCl_2 [CY] 2 Yellow-orange 9.8 24.8 <t< td=""><td>v -</td><td>-</td><td>(23.5)</td><td>(20.5)</td><td></td></t<>	v -	-	(23.5)	(20.5)		
TaCl_3[PT]_2 Red (24.0) (40.8) TaCl_3[PT]_2 Red 18.7 32.0 MeTaCl_3[CY] Orange-red 20.0 34.2 MeTaCl_3[PT] Yellow-orange 19.4 33.4 MeTaCl_2[PR] Red-brown 20.5 27.4 Me_2NbCl_2[PR] Red 17.0 (33.5) Me_2NbCl_2[CY] Red 16.8 22.6 MeNbCl_2[CY] Red 11.6 14.7 Me_2TaCl_2[PR] Yellow-orange 12.8 33.1 Me_2TaCl_2[PR] Yellow-orange 12.8 33.1 MeTaCl_2[PR] Yellow-orange 12.8 33.1 MeTaCl_2[PR] Yellow-orange 12.8 33.1 MeTaCl_2[PR] Yellow-orange 12.8 33.1 MeTaCl_2[PR] Yellow 17.0 43.1 MeTaCl_2[PR] Yellow-orange 12.8 33.1 MeTaCl_2[PR] Yellow 17.0 43.1 MeTaCl_2[PR] Yellow 12.9 (32.9) Me_2TaCl_2[PR] Yellow	MeTaCl 1 PR	Orange-red	23.6	40.7		
TaCl_3[PT]_2 Red 18.7 32.0 MeTaCl_3[CY] Orange-red 200 34.2 MeTaCl_3[PT] Yellow-orange 19.4 33.4 MeTaCl_2[PR] Red-brown 20.5 27.4 Me_2NbCl_2[PR] Red 16.8 22.6 Me_2NbCl_2[CY] Red 11.6 14.7 Me_2NbCl_2[CY] Red 11.6 14.7 Me_2TaCl_2[PR] Red 11.6 14.7 MenbCl_2[CY]_2 Red 11.6 14.7 MetaCl_2[PR] Yellow-orange 12.8 33.1 MetaCl_2[CY] Yellow-orange 12.8 33.1 MetaCl_2[CY] Yellow-orange 9.8 24.8 MetaCl_2[CY] Yellow-orange 9.8 24.8 MetaCl_2[PT] Yellow 13.9 33.6		-	(24.0)	(40.8)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TaClafPtin	Red	18.7	32.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(18.7)	(31.8)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MeTaCla(CY)	Orange-red	20.0	34.2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(20.3)	(34.6)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MeTaCh (PT)	Yellow-orange	19.4	33.4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, and the second s	B+	(19.7)	(33.5)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MeaNbClaIPR]	R ≥d-brown	20.5	27.4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(21.2)	(27.7)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Me>NbClolCY)	Red	16.8	22.6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(17.1)	(22.4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MeNbChICY)	Red	11.6	14.7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(11.4)	(15.0)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MenTaCh [PR]	Yellow	17.0	43.1		
MeTaCl_2 [PR]_2 Yellow-orange 12.8 33.1 (12.9) (32.9) $Me_2 TaCl_2 [CY]$ Yellow 14.1 36.1 $MeTaCl_2 [CY]_2$ Yellow-orange 9.8 24.8 $Me_2 TaCl_2 [PT]$ Yellow 13.9 33.6 $MeTaCl_2 [PT]_2$ Yellow 13.9 33.6 $MeTaCl_2 [PT]_2$ Yellow 9.7 24.8			(16.8)	(42.8)		
Me ₂ TaCl ₂ [CY] Yellow (12.9) (32.9) Me ₂ TaCl ₂ [CY] Yellow 14.1 36.1 MeTdCl ₂ [CY] ₂ Yellow-orange 9.8 24.8 Me ₂ TaCl ₂ [PT] Yellow 13.9 33.6 MeTaCl ₂ [PT] ₂ Yellow 9.7 24.8	MeTaCl [PR] -	Yellow-orange	128	33.1		
Me2T3Cl2[CY] Yellow 12.1 36.1 MeTaCl2[CY]2 Yellow-orange 9.8 24.8 Me2TaCl2[PT] Yellow 13.9 33.6 MeTaCl2[PT]2 Yellow 13.7 (34.9) MeTaCl2[PT]2 Yellow 9.7 24.8			(12.9)	(32.9)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mea TaCla [CY]	Yellow	14.1	36 1		
MeTaCl2[CY]2 Yellow-orange 9.8 24.8 (9.9) (25.1) Me2TaCl2[PT] Yellow 13.9 33.6 (13.7) (34.9) MeTaCl2[PT]2 Yellow 9.7 24.8			(15.8)	(35.3)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MeTaCla[CY]a	Yellow-orange	9.8	24.8		
MezTaCl2(PT) Yelow 13.9 33.6 (13.7) (34.9) MeTaCl2(PT)2 Yellow 9.7 24.8 (9.6) (9.4.4)		· -	(9.9)	(25.1)		
(13.7) (34.9) MeTaCl ₂ [PT] ₂ Yellow 9.7 24.8 (9.6) (9.4.4)	Me, TaCl, (PT)	Yelow	13.9	33.6		
MeTaCl ₂ [PT] ₂ Yellow 9.7 24.8	• • • • • •		(13.7)	(34.9)		
	MeTaCl > (PT) >	Yellow	9.7	24.8		
		• • • • • • •	(9.6)	(24.4)		

 o [PR] = [N·1·Pr-C(Me)=N·1·Pr}. [CY] = [N(C_6H_{11})-C(Me)=NC_6H_{11}], C_6H_{11} = cyclohexyl. [PT] = [N(p tolyl)-C(Me)=N(p tolyl)].

(a). Reactions with MeMCl₄

Solutions of MeNbCl₄ react rapidly with PRCD, CCD and PTCD at room temperature yielding products of the type MCl₄ [NR-C(Me)=NR] containing the acetamidine moiety. The IR and proton NMR spectra show that insertion into the metal-carbon bond has taken place. Thus the bands at ca. 2100 cm⁻¹ in the spectra of the pure carbodiimides [ν_{as} (N=C=N)] are absent and additional bands are present in the 1500-1650 cm⁻¹ region attributable to C ···· N stretching modes (Tables 2-4) are present. Other complexes containing C···· N groups show bands in this region [7, 8]. The complexes show no bands in the 450-

Complex ^a	Proton resonances b								
	СНС	Me ₂ C d	MeC	MeM	₽'(M—C)	ν(C•••N)			
NbCl4[PR]	5.65	8.41	7.69			1640 m,	1508 w·m		
TaCL [PR]	5.36	8.43	7.75			1645 w,	1505 m		
MeNbCl3[PR]	5.61	8.57	7.68	6.67	479 s	1640 m,	1542 m		
MeTaCl ₃ [PR]	5.49	8.58	7.73	7.56	476 s	1646 w-m,	1518 m		
TaCl3[PR]2	5.18	8.59	7.71			1644 m. 1529 m	1596 w-m,		
Me ₂ NbCl ₂ [PR]	5.71	8.58	7.75	7.83	485 s, 463 (sh)	1640 m,	1580 w		
Me2TaCl2[PR]	5.48	8.65	7.75	8.42	-188 s (br)	1642 m,	1505 w		
MeTaCl2[PR]2	5.55	8.66	7.84	8.89	476 w	1649 m. 1531 m	1590 w.		

TABLE 2 NMR (7, ppm) AND (R (cm^{-1}) SPECTRA OF COMPLEXES DERIVED FROM PRCD

^a PR = [N-1-Pr—C(Me)=N-1-Pr]. ^b Dichloromethane solution. The integrated intensities were consistent with the formulations. ^c Septet. ^d Doublet.

TABLE 3 NMR (7, ppm) AND IR (cm⁻¹) SPECTRA OF COMPLEYES DERIVED FROM CCD

Complex a	Proton resonances b						
	СНС	MeC	MeM	₽'(M—C)	ν(C•••N)		
NbCL [CY]	6.02	7 69			1641 w-m.	1510 w	
TaCl ₁ [CY]	5.85	7.69			1635 m.	1506 w-m	
MeNbCl [CY]	6.20	7,66	6.67	475 s	1643 m.	1575 w.	1518 ms
MeTaCl3[CY]	5.95	7 55	7.70	471 s	1640 m.	1518 m-s	
Me NbCl (CY)	6.31	7.77	7.82	495 s (br)	1647 m.	1580 w-m	
MeNbCl2[CY]2	6.29	7.88	d	463 s	1635 m.	1548 s (br)	
Men TaClo [CY]	6.00	7.70	d	490 s. 450 m	1641 m-s.	1580 m	
MeTaCl2 [CY]2	6.11	7.82	d	475 m	1646 w,	1624 w, 1543 s	1560 s,

^a [CY] = $[NC_6H_{11}-C(Me)=NC_6H_{11}]$, $C_6H_{11} = c_5$ clohexyl. ^b Dichloromethane solution. The integrated intensities were consistent with the formulations. All the complexes showed a broad group of resonance at 7 7.9–9.3 ppm attributable to the cyclohexyl groups. ^c Broad resonance. ^d Obscured by resonances of cyclohexyl group.

TABLE 4

NMR (7, ppm) AND IR (cm⁻¹) SPECTRA OF COMPLEXES DERIVED FROM PTCD

Complex a	Proton reso	onances b			
	Me—aryl	MeC	MeM	- ν(M—C)	ν(CN) ^c
NbCl ₁ [PT]	7.54	7.94			1633 w
TaCl ₄ [PT]	7.53	7.93			1635 w
MeNbCl3[PT]	7.58	7.87	6.96	481 m	1637 m
MeTaCl ₃ [PT]	7,57	7.92	7.81	487 m	1633 m-w
Me ₂ TaCl ₂ [PT]	7.65	8.00	8.34	468 m	1639 w
MeTaCl2 (PT) 2	7.61	8.21	9.01	484 m	1641 s

^a [PT] = [N(p tolyi)—C(Me)=N(p tolyi)]. ^b Dichloromethane solutions. The integrated intensities were consistent with the formulations of the complexes. All the complexes showed resonances at ca. r 2.8 attributable to the aryl groups. ^c Assignments incomplete because of absorptions of aromatic rings in 1500—1600 cm⁻¹ region.

550 cm⁻¹ region attributable to metal—carbon stretches and moreover the resonance in the proton NMR spectrum attributable to the methyl group (ca. τ 7.7 ppm) is not in the region associated with MeNbCl₄ and MeTaCl₄ coordination complexes (τ 6.5–6.8 and τ 7.2–7.6 ppm respectively) [9, 10] but close to that found for related complexes such as MCl₄ [NR—C(Me)=O] (ca. τ 7.7 ppm) [2] which is consistent with the mode of insertion proposed above.

(b). Reactions with Me₂MCl₃

Both Me₂NbCl₃ and Me₂TaCl₃ react with PRCD, CCD and PTCD yielding complexes of the type MeMCl₃[NR—C(Me)=NR] if an excess of Me₂MCl₃ is used. The same products are obtained if a 1/3 Me₂MCl₃/carbodiimide mole ratio and a short (< 1 h) reaction time is used, but the complex TaCl₃[N-i-Pr—C(Me)-=N·i-Pr]₂ could be obtained by using excess PRCD and a longer reaction time in CH₂Cl₂ solution. The analogous reaction with Me₂NbCl₃ did not yield an analytically pure product but the proton NMR spectrum indicated that reaction with the methylmetal group had taken place. The IR and proton NMR spectra of the products derived from Me₂MCl₃ were similar to those discussed above for the MeMCl₄ reaction indicating a similar mode of insertion. The complexes which retained a methylmetal group showed ν (M—C) in the expected region (Tables 2—4) [9, 10].

(c). Reactions with Me_3MCl_2

The alkyls Me_3MCl_2 reacted quite readily with the carbodilmides PRCD, CCD and PTCD yielding complexes analogous to those described above. The reaction between the carbodiumide and an excess of Me₃MCl₃ yielded complexes of stoichiometry Me, $MCl_{1}[NR-C(Me)=NR]$ except for the reaction between Me₃NbCl₂ and PTCD which gave a product which was always contaminated with some MeNbCl₁NR-C(Me)=NR]. When the reactions were carried out using larger quantities of the carbodilmide the behaviour of Me_3NbCl_2 and Me₃TaCl₂ differs somewhat. Thus if Me₃TaCl₂ is reacted with a small excess of PRCD, CCD or PTCD (Me_3 TaCl₂/carbodimide = 1/3) complexes of the type $Me_3TaCl_2[NR-C(Me)=NR]_2$ are obtained. The reaction between Me_3NbCl_2 and PRCD, even using a five-fold excess of PRCD, yields only the 1/1 product but the reaction between Me₁NbCl₁ and CCD (1/6 mole ratio) yields MeNbCl₁- $[NR-C(Me)=NR]_{2}$ (R = cyclohexyl). The analogous tantalum complex can be obtained even when using only a 1/2 Me₃TaCl₂/CCD mole ratio of reactants. suggesting that despite the greater thermal lability of methyl-niobium as compared to methyl-tantalum bonds [9, 10], Me₃TaCl₂ is somewhat more reactive towards carbodimides than Me₃NbCl₂.

The remaining MeTa bond in the complex $MeTaCl_2[N-1-Pr-C(Me)=N-i-Pr]_2$ did not react with further PRCD even when refluxed with a ten-fold excess of PRCD in CH_2Cl_2 for 16 h. A similar inertness has been observed in the reactions of Me₃TaCl₂ with NO and PhNCO [2, 3].

The IR and proton NMR spectra of the products derived from Me_3MCl_2 confirmed that the mode of insertion was analogous to that described for the reactions of $MeMCl_4$ and Me_2MCl_3 . The complexes $Me_2MCl_2[NR-C(Me)=NR]$ showed (Tables 2, 3) a rather broad band in the metal-carbon stretching region suggesting that the methyl groups are in a *cis* rather than a *trans* conformation. The proton resonance attributable to the methylmetal group in the complexes

derived from both Me₂MCl₃ and Me₃MCl₂ is at a higher field than the methyl resonance of the parent alkyls [9, 10].

The complexes MCl₄[NR—C(Me)=NR], MeMCl₃[NR—C(Me)=NR] and Me₂MCl₂[NR—C(Me)=NR] are presumably six-coordinate while the complexes TaCl₃[N-i-Pr—C(Me)=N-1-Pr]₂ and MeTaCl₂[NC₆H₁₁—C(Me)=NC₆H₁₁]₂ (C₆H₁₁ = cyclohexyl) have been shown by single crystal X-ray studies to be seven-coordinate monomers containing bidentate acetamidine groups [11]; the other complexes MeMCl₂[NR—C(Me)=NR]² are thus presumably also seven-coordinate. The C—N bond distances in the chelate rings show that each C—N bond has appreciable double bond character. The IR spectra of the complexes (Tables 2—1) as discussed earlier are consistent with the partial double bond character of the C—N bonds. The complexes containing two acetamidine groups show three or four bands in the C····N stretching region while those containing only one group, in general show only two bands. Bands attributable to metal—nitrogen stretching modes could not be located with certainty but all the complexes showed rather complex metal—chlorine stretching modes in the 300—400 cm⁻¹ region.

The reactivity of the carbodiumides PRCD, CCD and PTCD towards a particular alkyl were very similar but the analogous reactions between BUCD and Me₃TaCl₂ and Me₂NbCl₃ gave only traces of products after several days reaction at room temperature. tert-Butyl isothiocyanate and isopropyl isothiocyanate have been found to be much less reactive than MeNCS towards Me₂NbCl₃ [11], confirming that the bulk of the unsaturated reagent plays a considerable part in determining the relative ease of the insertion reaction.

The reactivities of the alkyls towards a particular carbodiimide followed the sequence, $MeMCl_4 > Me_2MCl_3 > Me_3MCl_2$, which is the same as has been observed for related reactions with RNCO and RNCS [1, 2] which is again consistent with the insertion reaction proceeding via initial formation of a donor—acceptor complex. The similar reactivities of CCD and PTCD noted above suggests that the different reactivities of PhNCX and MeNCX (X = O, S) [1, 2] arises from steric rather than electronic effects as the bulk of the cyclohexyl and *p*-tolyl groups are similar.

As the heterocumulenes RNCO, RNCS and RNCNR readily insert into Nb-C and Ta-C bonds it was of interest to see if these reactions could be extended to other related unsaturated reagents. Reactions of diphenylketene, allene, azobenzene and an imine have been investigated. Although diphenylketene reacted with MeNbCl₄ and MeTaCl₄ at room temperature pure products were not obtained; oxygen abstraction, which is a common feature of niobium and tantalum chemistry [12], probably taking place. Allene does not react with Me₂NbCl₃ or Me₃TaCl₂ at room temperature while the imine PhCH=NPh brings about reduction of MeNbCl₄. Reaction of MeNbCl₄ or MeTaCl₄ with azobenzene leads to the formation of a weak complex; azobenzene could be recovered unchanged after hydrolysis of the complex indicating that insertion had not taken place.

Experimental

Analyses were carried out as previously described [9]. Proton NMR spectra were measured using a Perkin–Elmer R12B instrument, IR spectra (4000-250 cm⁻¹) were recorded using Perkin–Elmer 257, 457 or 577 instruments as Nujol or hexachlorobutadiene mulls supported between KBr or polythene plates.

All manipulations were carried out in vacuo or in an atmosphere of dry oxygen free nitrogen. Solvents were dried by standard procedures. N,N'-di-tertbutylcarbodiimide was prepared from N,N'-di-tert-butylthiourea by the published procedure [13-15]. The other carbodiimides were obtained from commercial sources (iso-propyl from Aldrich, cyclohexyl from Koch-Light, and p-tolyl from Ralph Emanuel) and dried by prolonged pumping or with molecular sieves (4A).

Solutions of the alkyls Me_xMCl_{5-x} (M = Nb, Ta, x = 1-3) were prepared by published methods [9, 10, 16]. Solutions of $MeMCl_4$, M = Nb, Ta in CH_2Cl_2 were prepared by the following method. A mixture of MCl_5 (0.01 mol), Me_2Zn (0.0045 mol) and CH_2Cl_2 (30 ml) was shaken for 4 h at room temperature. Unreacted MCl_5 and $ZnCl_2$ were removed by filtration and the resulting solution reacted immediately with the appropriate carbodiimide. The solution contained only $MeMCl_4$ and was not contaminated with significant quantities of other alkyls. The quantities used in the reactions described below are based on the quantity of MCl_5 used in the preparation.

Preparation of $MCl_1(NR-C(Me)=NR)$ (M = Nb, Ta, R = i Pr, cyclohexyl, p-tolyl)

A solution of the carbodiimide (0.01 mol) in CH_2Cl_2 (20 ml) was added to a solution of MeMCl₄ (0.01 mol) in CH_2Cl_2 (20 ml). The solvent was removed from the reaction mixture, the solid product washed with pentane and pumped dry.

 $Preparation of MeNbCl_3[NR-C(Me)=NR] (R = i Pr, cyclohexyl, p-tolyl)$

A solution of the carbodiimide (0.01 mol) in pentane (40 ml) was added to a solution of Me₂NbCl₃ (0.01 mol) in pentane (20 ml) at 0°. The mixture was stirred for 1 h at room temperature and the solid isolated by filtration, washed with pentane and pumped dry.

Preparation of $MeTaCl_3[NK-C(Me)=NR]$ (R = i-Pr, cyclohexyl, p-tolyl) As above, but using 0.005 mol of the carbodimide.

Preparation of $TaCl_3[N-\iota-Pr--C(Me)=N-\iota-Pr]_2$

MeTaCl₃ [N-i-Pr—C(Me)=N-i-Pr] (0.01 mol) was allowed to react with PRCD (0.06 mol) in CH₂Cl₂ (30 ml) for 12 h at room temperature. The solvent and excess ligand were removed at the pump and the residual solid extracted with pentane to remove final traces of the carbodiimide.

Preparation of $Me_2NbCl_2[N-i-Pr-C(Me)=N-i-Pr]$

A solution of PRCD (0.005 mo!) in pentane (20 ml) was added to a solution of Me₃NbCl₂ (0.01 mol) in pentane at 0°. The mixture was stirred at 0° and the solid product, isolated by filtration, washed with pentane and pumped at 0°.

Preparation of $Me_2NbCl_2[NC_6H_{11}-C(Me)=NC_6H_{11}]$

A solution of N, N'-dicyclohexylcarbodiimide (0.006 mol) in pentane (30 ml) was added to a solution of Me₃NbCl₂ (0.01 mol) in pentane (20 ml) at 0°. The mixture was stirred for 3 h at 0° and the solid product isolated as above.

Preparation of $Me_2TaCl_2[NR-C(Me)=NR]$ (R = i-Pr, cyclohexyl, p-tolyl)

A solution of the carbodumide (0.005 mol) in pentane (40 ml) was added to a solution of Me₃TaCl₂ (0.01 mol) in pentane (20 ml) at 0° and the mixture stirred at room temperature for 2 <u>h</u>.

Preparation of $MeNbCl_2[NC_6H_{11}-C(Me)=NC_6H_{11}]_2$

A solution of N,N'-dicyclohexylcarbodumude (0.06 mol) in pentane (80 ml) was added to a solution of Me₃NbCl₂ (0.01 mol) in pentane at 0°. The mixture was left to stand overnight. The solid product isolated by filtration and traces of unreacted carbodiimide removed by extraction with pentane.

Preparation of MeTaCl₂ [N-1-Pr-C(Me)=N-i-Pr]₂

A mixture of PRCD (0.05 mol) and Me₃TaCl₂ (0.01 mol) in CH₂Cl₂ (20 ml) was allowed to react for 3 h at room temperature. The solvent was removed from the mixture and pentane (40 ml) added. The solid was isolated by filtration and extracted with pentane to remove the final traces of the carbodiimide.

Preparation of $MeTaCl_2[NR-C(Me)=NR]_2$ (R = cyclohexyl, p-tolyl)

A solution of the carbodimide (0.03 mol) in pentane (40 ml) was added to a solution of Me₃TaCl₂ (0.01 mol) in pentane (20 ml) at room temperature and stirred for 2 h. The solid product was isolated by filtration, washed with pentane and pumped dry.

Acknowledgement

The author thanks Professor A.K. Holliday for his interest in this work.

References

- 1 J.D Wilkins, J. Organometal. Chem., 65 (1974) 383.
- 2 J.D. Wilkins, J. Organometal Chem., 67 (1974) 269.
- 3 M.G.B. Drew and J D. Wilkins, J. Organometal, Chem., 69 (1974) 111.
- 4 M.S. Krarasch and O. Reinmuth, Grignard reactions of non-metallic substances, Constable, London, 1954
- 5 M.F. Lappert and B. Prokai, Advan. Organometal. Chem., 5 (1967) 225.
- 6 G. Chandra, A.D. Jenkins, M.F. Lappert and R.C. Srivastava, J. Chem. Soc. A, (1970) 2550.
- 7 J. Miller, A.L. Balch and J.H. Enemark, J. Amer. Chem. Soc., 93 (1971) 4612.
- 8 L.J. Bellamy, The infra-red spectra of complex molecules, Methuen, London, 1966.
- 9 G.W.A. Fowles, D.A. Rice and J.D. Wilkins, J. Chem. Soc. Dalton Trans., (1972) 2313.
- 10 G.W.A. Fowles, D.A. Rice and J.D. Wilkins, J. Chem. Soc. Dalton Trans., (1973) 961.
- 11 M.G.B. Drew and J.D. Wilkins, in the press.
- 12 F. Fairbrother, The chemistry of niobium and tantalum, Elsevier, Amsterdam, 1967.
- 13 M. L. Moore and F.S. Crosslev, Org. Svn. Coll. Vol., 3 (1955) 559.
- 14 M.L. Moore and F.S. Crossley, Org. Syn. Coll. Vol., 3 (1955) 617.
- 15 P. Schlack and G. Keil, Justus Liebigs Ann. Chem., 661 (1963) 164.
- 16 G.W.A. Fowles, D.A. Rice and J.D. Wilkins, J. Chem. Soc. Dalton Trans., (1974) 1080